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A spectral deferred correction strategy for low Mach number reacting
flows subject to electric fields
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We propose an algorithm for low Mach number reacting flows subjected to electric field
that includes the chemical production and transport of charged species. This work is an
extension of a multi-implicit spectral deferred correction (MISDC) algorithm designed
to advance the conservation equations in time at scales associated with advective trans-
port. The fast and nontrivial interactions of electrons with the electric field are treated
implicitly using a Jacobian-Free Newton Krylov approach for which a preconditioning
strategy is developed. Within the MISDC framework, this enables a close and stable
coupling of diffusion, reactions and dielectric relaxation terms with advective transport
and is shown to exhibit second-order convergence in space and time. The algorithm
is then applied to a series of steady and unsteady problems to demonstrate its capa-
bility and stability. Although developed in a one-dimensional case, the algorithmic
ingredients are carefully designed to be amenable to multi-dimensional applications.

Keywords: low Mach number combustion; spectral deferred correction (SDC); Jaco-
bian Free Newton Krylov (JENK); electric field

1. Introduction

Experiments have shown that applying electric fields to flames can provide an effective
control of the combustion process by enhancing flame propagation speed, improving flame
stabilisation and reducing pollutant emissions [1,2]. However, the development of such
technology has proven difficult without a clear understanding of the interaction mecha-
nisms between the flame and the electric field, and the use of electric fields is currently
limited to flame detection sensors [3].

The chemical decomposition of hydrocarbons proceeds mainly through reactions involv-
ing neutral intermediate radicals. However, some reactions, called chemi-ionisation reac-
tions, also produce small quantities of charged chemical species and electrons [4—6]. These
particles undergo a force when subjected to an electric field and their interactions with the
surrounding gas can result in a global flame response to the electric field. Three major
effects have been advanced in the literature [1]: (1) the collision of charged particles with
neutral ones induces a bulk convective transport in the gas called the ionic wind effect;
(2) the transport of highly reactive charged particles from the reactive layer of the flame to
the low temperature zone enhances the fuel oxidation rate; and (3) for strong electric fields
ohmic heating increases the flame temperature, resulting in a higher flame speed. These
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processes were found to have an effect on flame speed [7-11], flame stabilisation [12] and
NO, and soot formation [13—-15]. The extent to which each process is important depends
on the applied potential difference, the polarity, the distance between the electrodes and the
flame, and the operating conditions, making it difficult to compare results from different
experiments and to provide clear design guidelines for engineers.

Over the last decade, several groups have developed numerical methods to analyse the
interactions of an electric field with charged particles in a flame. In most applications,
the flame can be considered weakly ionised, i.e. the number density of electrons is much
smaller than that of neutrals. However, the presence of charged particles, especially light
electrons, results in challenging numerical issues associated with the wide scale separation
between the electron dielectric relaxation scale and the comparatively slow hydrodynamic
scale. Consequently, early studies focused mainly on steady-state one-dimensional flames
[16—18] without an external applied electric field and identified the main chemical path-
ways associated with ions as well as the role of the ambipolar diffusion in the charged
species spatial distribution. More recently, these steady-state numerical studies have been
used to provide a more complete characterisation of the flame response to external forc-
ing (also called the i — V curve, relating the current drawn from the flame to the applied
voltage difference) [19-22]. In agreement with experimental evidence, the effect of the
external electric field is found to strongly depend on its polarity. The current is found to
increase linearly with the potential difference before reaching a saturation current for high
(positive) voltage. These studies highlight the dependence of the numerical results on the
choices of the chemical mechanism and, to a lesser extent, on the modelling of electron
and ion transport properties [23,24]. Steady-state multi-dimensional simulations have also
been reported [25,26], showing that the simulations are able to capture qualitatively the
change in flame shape and position resulting from the ionic wind. Due to the aforemen-
tioned multi-scale nature of the problem, fewer unsteady simulations are reported in the
literature [21,27-30]. These simulations capture the effect of the electric field on the flame
base position and investigate both direct current (DC) and alternative current (AC) condi-
tions. To partially alleviate the fast electron drift velocity constraint on the stability of the
numerical method, Belhi et al. [28,29] employed a small value of the electron mobility «,
and a linearised approximation of the charged species transport equation. The effects of
these assumptions on the flame response was not evaluated and this approach cannot be
extended to more realistic values of k., and higher intensity external electric fields without
significant reduction of the simulation time step. In the plasma community, semi-implicit
methods have been developed to overcome the electron time scale constraint [31]. How-
ever these approaches allow at best a couple orders of magnitude increase of the time step
(~ 107" — 10713 s depending on the intensity of the electric field), which remains sev-
eral order of magnitudes smaller than the hydrodynamic time scale in typical turbulent
combustion applications (~ 1077 — 1078 s).

In this paper, we propose a strategy based on multi-implicit spectral deferred correction
(MISDC) method [32] to include the coupling between charged species and an electric
field in a low Mach number combustion framework. The MISDC approach allows tight
coupling between the different physical processes in a multi-scale simulation by includ-
ing the effect of each process in their separate integration (in contrast to Strang splitting
methods that consider each process sequentially and independently [32]). To alleviate
the electron dielectric relaxation time scale constraint, the non-linear system formed by
the coupled electron conservation equation and electrostatic potential equation is solved
implicitly using a preconditioned Jacobian-free Newton Krylov (JFNK) method.
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The paper is organised as follows. In Section 2 we introduce the low Mach number con-
servation equations including the electrostatic potential equation as well as the chemical
and transport models. In Section 3 we discuss the changes implemented in the MISDC
algorithm and details of the solution of the implicit non-linear system. We then provide
a skeletal description of the time advance procedure. In Section 4 we present results for
premixed flames in 1D under DC and AC conditions. Finally, the paper finishes with the
main take-away of our approach and discusses future work.

2. Low Mach number equation set
2.1. Low Mach number equation set

This paper builds on the low Mach number equations set reported in previous work [32,33],
with the addition of an electrical drift contribution in the momentum, species and enthalpy
equations, a separate conservation equation for the electron number density and a Poisson
equation for the electrostatic potential to obtain an electric field consistent with the charged
species distribution.

In the low Mach number regime, the characteristic velocity of the fluid U4, is much
smaller than the speed of sound a (typically |U .4 |/a = M ~ 0.1 or even smaller), so the
effect of acoustic wave propagation can be neglected since it does not affect the dynamics
of the system. In numerical simulations, this effect is mathematically removed from the
equations of motion and the system evolves subject to a time-step based on the advective
CFL condition. In low Mach number conditions, the total pressure can be decomposed
into a spatially uniform (thermodynamic) component py, and a perturbational term, 7, that
drives the flow:

pX,1) =po+ (X, 1). ey

Although the formulation supports a time varying po (arising, for example, in closed
chamber applications [34]), we assume an open domain here to simplify the exposition.

The set of equations describing species, electrons, enthalpy and momentum conservation
in the low Mach number limit [33] are given by:

d(pY,) | .
T+V(Uadvpym):_vrnz+wm m=1:N, (2)
d(ne .
(8nl) +V- (Uadvne) =-V. re + e, (3)
YO G Uph) = V - AVT — YV halw)+ Y zn¥ulw - E. (4
dt m m+e
a(pU,
%‘FV'(pUadandv) =-Va +V 'T+pZZmYmEa (5)

m+e

where N is the total number of species (excluding the electrons), p is the density, Y, is the
mass fraction of species m, n, is the electron number density, U .4, is the fluid advective
velocity, I, (resp. T',) is the diffusion mass flux of species m (electrons), h = Zm(Ymhm)
is the mixture total (sensible and chemical) enthalpy with #,,(T) the enthalpy of species
m, w,, (resp. w,) is the production rate of species m (electrons) due to chemical reactions,
A is the thermal conductivity, z,, is the electric charge per unit mass of species m, E is
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the electric field, and 7 is the perturbational pressure arising from the low Mach number
approximation. The evolution equations are closed by an equation of state, po = p(p,T,Y)
for the thermodynamic pressure. Note that the low Mach assumption requires that the flow
evolve subject to a constant py. This DAE system can be solved by differentiating the
equation of state in the frame of the fluid and requiring that the evolution be constrained to
satisfy constant pressure in this frame [35]. Here we assume a mix of ideal gases:

RM Ym
Po= P PRy Em W, (6)

where py is the ambient pressure, W is the mean molecular weight of the mixture, W, is the
molecular weight of species m and R, is the universal gas constant. Expanding in partial
derivatives and using the conservation equations, the constant py condition can be recast
as a constraint on the velocity [33]:

1
V Uy = CT<V.WT+Zrm.Vh,,,+Zz,,,Ymrm.E>
P m m-+e
1 w 1 W h,
- V.T,+— — " Vo, =S, 7

where ¢, is the specific heat at constant pressure for the mixture. Since this constraint
is a linearisation of the equation of state, the thermodynamic variables will not remain
consistent with pp numerically; in order to prevent this thermodynamic drift, a correction
term & x has been added to to the constraint equation (7):

Peos — PO S
Tt + Uy - Vpeox) =S, (8)

V-Uuy =85+ ! <
pe()s

dx

where 0 <f < 1 is a damping factor (see Day et al. [33] for details on the iterative imple-
mentation of this equation). Compared to classical low Mach number reactive flows, two
additional source terms appear in the conservation equations: (1) the Lorentz volumetric
forces (last term in Equations (5) and (2) the ohmic heating, corresponding to the work of
the Lorentz forces (last term in Equation (4)).

The stress tensor in the momentum Equation (5) is defined as:

2
T=u [VUM + (VUua)" — 32V Uadv)] , ©)

where (Y, T) is the dynamic viscosity and 7 is the identity tensor (we ignore the bulk vis-
cosity here). Since neither species diffusion nor chemistry redistribute total mass, we have
> uTm=0and ), @, =0.Noting that )", Y, = I (ignoring the mass of electrons), the
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continuity equation can be derived summing up the species continuity equations:

ap
ot

The diffusion flux of species m can be expressed as:

l-‘m = mevm’ vm - _dem = _Tm (dmd +dm,ef) - vm,d + vm,ef, (11)

+ V- (pUaua) = 0. (10)

where V,, defines the diffusion velocity of species m in terms of EGLIB’s ‘flux diffu-
sion vector’ 1, = (W,,,/ V_V)Dm [36] and the driving forces d,,; D,, is the mixture-averaged
diffusion coefficient of species m. Ignoring Dufour, Soret and barodiffusion terms, the
diffusion and electric driving forces are, respectively:

dm,d = Ver
VUnqeNa w w 12)
dme = —_YmV = mYm_V P
o= TR Wy Ve = g m Ve

where X, is the mole fraction of species m, ¢ is the electric potential, v, is the valence (e
charges per molecule) of species m, g, is the elementary electron charge, N4 is Avogadro’s
number, and z,, = v,,g.N4/W,, is the charge per unit mass of species m.

Under the electrostatic assumption, the local electric field E is obtained from Gauss’

law:

v.E=" (13)
€0Er

where ¢, = ), ZnpYm + qen, is the local total charge number density of the mixture and
€9 and €, = 1 are the vacuum permittivity and the relative permittivity of the gaseous
medium, respectively. The electric field is the negative gradient of the electrostatic
potential ¢, i.e:

E—=_v¢. (14)
Inserting Equation (13) in Equation (14) we obtain the electrostatic potential equation:
— e,V = gr. (15)

The drift velocity V,, . can also be written as V,, s = k[, where «,, is the mobility of
species m in the mixture. Thus, consistent with the Einstein relation [37], the mobility is
defined as:

VerNA

m = Dy, 16
K R.T (16)
The right-hand side of the diffusive driving force in Equation (12) can be rewritten as:
VX, = W VY, + Yo VW (17)
m = Wm m Wm

and so the diffusion fluxes can be rewritten in terms of mass fractions gradients plus W
corrections:

W w Y = Y, -
PYuVi = =P~ Do (VY 7L VW ) = —pDu VY = pDy VW, (18)

We will use this form of the transport equation to build an iterative time-implicit update
scheme based on lagging the corrections and sweeping through the species with decoupled
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linear solves for the Crank-Nicolson update. The resulting form of the diffusive species

flux will be:

= Ym =
l-‘m = _/ODmVYm - IODmWVW - IOYmeV¢ (19)

However, since we employed mixture-averaged diffusion coefficients, Equation (19) will
not in general satisfy that Zm fm = 0; to conserve mass, we introduce a correction velocity
[33] that guarantees that these fluxes sum to zero. Since we use an implicit approach to
compute the diffusion fluxes, we first solve the implicit system to evaluate the original
fluxes f‘m, then we conservatively correct f'm so that they sum to zero on each cell face
(we will denote the corrected fluxes as T',,), and finally we modify the time-advanced
values of the mass fractions Y, to be consistent with the corrected fluxes.

2.2. Chemical mechanism and species transport properties

The chemical mechanism employed in this work combines the GRI3.0 [38] for the oxida-
tion of methane with the reaction mechanism for charged species reported in Belhi et al.
[39]. The combined mechanism contains 61 species (not including electrons) and 386 reac-
tions, and includes 10 ions (4 cations and 6 anions) as listed in Table 1. In the remainder
of the paper, charged species refers to the ions whereas charged particles also includes the
electron. Several studies have showed that anions are only present in very small quantities
in freely evolving flames; electrons account for most of the negative charges. However,
Belhi et al. [30] recently showed that including the anions (especially large anions such as
CO5 and HCOy) is essential to reproduce the ionic wind motion observed experimentally.

The thermodynamic data for the charged species from the Burcat [40] database were
used. The computation of the transport properties for the charged particles listed in Table 1
uses the EGLIB library. Specific treatment of the ion/neutral or ion/ion collision is not
investigated in this work, the use of (n,6,4) and Coulomb [41] interaction potentials for
ions/neutrals and ions/ions collisions as described in Han et al. [24] will be studied in
future work.

The electron transport coefficients require a more detailed treatment. For low values
of the reduced electric field |E|/A, where A is the background gas number density, the
electrons are in thermal equilibrium with the mixture. In these conditions, the electron tem-
perature is equal to that of the mixture: electrons are accelerated by the electric field E, but
the collision frequency with neutral species (represented by A/) is high enough to prevent
the electrons from reaching high kinetic energy conditions. For higher values of |E|/N,
the electrons gain sufficient kinetic energy that their energy (temperature) is higher than the
remainder of the mixture. For this case the electrons are said to be non-thermal. Under these
conditions, the evaluation of the electron transport coefficients require the computation of
the evolution of the electron energy distribution function (EEDF) by solving the Boltz-
mann equation [42]. Additionally, the chemi-ionisation reaction CH 4+ O — HCO™' + e~

Table 1. Listof ions included in the chemical mechanism along with their molecular weight.

Cation H30" HCO* C,H;0* CHsOt
Wy [g/mol] 19.02 29.02 43.05 33.05
Anions OH™ (O O, COy HCO, HCO3

Wy [g/mol] 17.01 16.00 32.00 60.01 44.01 61.02
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Figure 1. (a) Electron mobility . as function of progress variable and reduced electric field. The
full line corresponds to the constant value k, = 0.4 m2V~1s~1 (b) Electron diffusion coefficient «,
as function of progress variable and reduced electric field.

is no longer the only chemical pathway producing electrons since impact ionisation rates
become important [42]. However, this last effect is not included in our framework at the
present time and its relevance will be the subject of future studies.

Previous studies employed a constant value of the electron mobility x, = 0.4m? V=1 s~!
[21,26] since this constant value was found to provide a good agreement with simu-
lations obtained from more detailed thermal electron transport calculations [23]. The
framework developed in this work aims at simulating realistic engineering applications
characterised by relatively high external voltages, conditions at which electrons can no
longer be assumed thermal. In order to include a non-thermal electron transport coeffi-
cient without explicitly computing the evolution of the EEDF, the mixture composition
and temperature are extracted from the simulation as function of the progress variable c:

T—-T;, 20)
C= ————.
Tmax - Tl

Note that other definitions of the progress variable could be used for fuels exhibiting more
complex behaviours. This information is then used in the BOLSIG + [43] code to estimate
the EEDF and the corresponding value of the electron mobility and diffusion coefficient at
different values of |E|/N . The resulting two-dimensional tables are shown in Figure 1 and
electron transport properties are extracted from these tables during the simulation using ¢
and |E|/N . Note that

3. MISDC strategy
3.1. MISDC strategy

The present strategy builds upon the MISDC methodology developed in Nonaka et al.
[32,34]. As a brief reminder, the spectral deferred correction (SDC) method [44] solves a
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system of ordinary differential equation:

¢, =F(t,0), telf]; 2D
(") =¢" (22)
using the integral form:
t
() = 9" +/ F(z,¢(1))dr. (23)
tﬂ

The SDC method generates successive approximation @® (1) of ¢(f) using the update
equation:

o V(1) = 9" + / [F**D) — F(p®)]dr + / F(p®)dr, 24

o I

where the explicit dependence of F and ¢ on 7 in the integrals has been dropped for simplic-
ity. By using a low-order approximation of the first integral and a more accurate quadrature
rule for the second integral, the SDC method effectively constructs an arbitrary order (the
order of the quadrature rule) solution by successive low-order corrections of the approx-
imation (p(") (#). In MISDC [45,46], F is decomposed into distinct processes, that can be
treated separately in their own time scales:

F(t,9®) =A@, 9(1) + D, ¢@®) + R, (1)) (25)

with A, D and R referring here to the advection, diffusion and reaction processes, respec-
tively. Here, following [32], A(t, ¢(?)) and D(t, ¢(t)) are piece-wise constant over each
time step. The former is evaluated using a second-order Godunov method while the latter
is evaluated using a midpoint rule. To accommodate the stiffness of hydrocarbon chemi-
cal reactions, the update equation for the reaction is formulated as an ODE and integrated
using a stiff ODE package such as CVODE. The effects of advection and diffusion are
taken into account as temporally constant forcing terms in the chemical ODE integration
(see [32] for more details on the integration procedure).

The main steps of the integration algorithm are summarised in Algorithm 1. The
set of transported thermodynamic scalars is written as ¢ = (p, ph, T, e, pY)T. The
superscript n indicates the timestep and (k) is the SDC iteration index. The diffu-
sion operator for scalar ¢ at time 7' is written Dy, the kth approximation of this
operator at time £"*! is written DZH’(") and the kth approximate of the advection
operator obtained with the Godunov procedure is A;“/ %M The charged species drift
flux appearing in Equation (19) is non-symmetric and introduces numerical instabilities
when discretised with the species diffusion flux using a second-order centred scheme.
To overcome this difficulty, the drift flux is treated along with the advective flux in
the second-order Godunov procedure by constructing an effective velocity for each
species, m:

U(k)

ef ,m

=UY — v, Ve (26)
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Algorithm 1: Time step: 1 — ¢"+!

1 Get advection velocities: U,
2 Advance thermodynamic variables
(a) Initialize SDC predictor:
- Get scalar transport properties from ¢”"
- Solve Poisson equation for ¢"
- Compute initial diffusion operators D,
- Initialize SDC predictor: ¢"+1© « ¢, DZJ‘H’(O) <D
(0)do k : 1, kyayx (> 2 for 2"-order)
- Get scalar transport properties from ¢
- Compute approximate diffusion operators D/;™®

n+1,(k)

- Compute projected advection velocity U gfi)l
- Compute explicit advection operators Ag“/ 20,
- Compute effective velocity for each species
k k 1,k
0%, = U2 — ¥
- Use second-order Godunov to get advection fluxes (pU gf,(p)”“/ 2.0
- COI’Ilpl.]te implicitly Fhe species and epthalpy diffusion D';;]L’)(Hl)
- Solve implicit non-linear electron/Poisson system
- Compute provisional charged species fields (pY)%H-¢+D
- Use algorithm from Section 3.2 to get n"*1:*+1) and ¢n+1.¢-+D
- Integrate species reaction and enthalpy evolution over At and evaluate the
reaction term 1 1(31;—;1)

3 Advance velocity

The resolution of the coupled electron/electrostatic potential non-linear system requires

. . .tk
provisional charged species mass fraction pY, :

~n 1 .
FELIY oy e A 4 S 0= D) D |

m

where 1 ;ekfn is the integrated representation of the reaction term for species m from the
previous SDC iteration.

3.2. Non-linear implicit solution

At each SDC iteration, we solve the non-linear system formed by the electron conservation
(Equation (3)) and the electrostatic potential (Equation (15)):

a(n,
(a”t ) -V n (U — V) +V - DV, + Ire (28a)
208,V = — Y zup¥,, + ene, (28b)

where (pY )rFLG+D g the provisional charged species mass fraction at the current SDC
iteration and I, is the last evaluation of the electron chemical source term.
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Using a first order backward Euler time discretisation, the implicit non-linear system
can be written as:

— " — AtV nTNU -k, V") — AtV -D,Vn,"T 4+ f, =0 (29a)

08 g2l 4 gy =0, (29b)

_ nZ""l 4 =T
e
wheref, = —I%  +n"andfy = 3, zu (0¥ ¢+ /e, Introducing X = (1, ¢), Equation
(29) can be written as F'(X) = 0, where F'(X) is the non-linear residual. This system is
solved using a Jacobian-free Newton-Krylov (JFNK) method [47].
The basis of JENK is the iterative non-linear Newton solution, where at each iteration /,

a linear system of the form:
JVsx0 = —F(x") (30)

is solved. Here, X = XD _ X" js the Newton update and J® = 7(X") =
dF(X")/0X is the system Jacobian matrix. In practice, the components of X and F(X ¥)
can have entries than span a large range of values which can affect the solution of the linear
system (30) and destroy the convergence properties of Newton’s method. To address this
issue, Equation (30) is scaled by two diagonal matrices S and Sy :

S TS0 (S5 8X D) = -5 F(X D), 31)

where Sy contains typical values of F'(n.) and F(¢), respectively, and Sx contains typical
values of n, and ¢. The typical values are evaluated at the beginning of the non-linear
iterations since the appropriate values may evolve with the solution. The Newton iterations
are stopped when the norm of scaled residual is reduced by € orders of magnitude or the
scaled magnitude of the Newton step drops below a certain value €x:

IS7' FX D)oo < €Fs (32)
1S5 8X V|0 < ex. (33)

These tolerances must be chosen to ensure that the non-linear solution residual remains
smaller than the truncation error of the numerical schemes. A backtracking linesearch
algorithm is employed for globalisation of the Newton method [48].

For large non-linear systems encountered in multi-dimensional simulations, the compu-
tational cost and memory requirements of solving a linear system with a direct solver at
each Newton iteration are prohibitive. Our implementation thus uses the GMRES Krylov
method [49] to solve the scaled linear system (31). For clarity, the left and right scaling
matrices will not be carried in the following description and the outer (Newton) iteration
index [/ is dropped (the scaling is implemented in the code; however). The GMRES starts
with an initial guess 6X, and the corresponding residual rp = —F(X) — J5X. In the
context of a Newton-Krylov method, Xy = 0 is used since the Newton step tends toward
zero as we go through the Newton iterations. At the p™ iteration of the GMRES method,
we construct an approximation §X,, of the solution by solving a minimisation problem in
the Krylov subspace C, of J:

Ko(T,r0) = span(ro, Jro, J°ro, . ... TP~ 'ro). (34)

It can be seen that the GMRES method only needs the action of the Jacobian matrix on
a vector. For large linear systems, the construction and storage of matrix J can hinder
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the performance and the scalability of the algorithm. In the JFNK context, the explicit
construction of 7 is dropped in favour of a finite difference approximation of the the
matrix/vector product Jv:

F(X + eppy) — F(X)

EFD

JX)y = (35)

where epp is a small number. The quality of the approximation of J.v depends on the
choice of epp. Here we use the method employed in the Trilinos package [50]:

|X|
EFD = AFD (XFD + m) , (36)

13 . . .. .
where App = sm/ach is a small parameter related to the machine precision &,,,.,. The linear
solver is iterated until:

1T8Xp + FX)ll2 < yIIFX)]l2. (37

A constant value of y is kept throughout the simulation and the effect of the choice of y
on the non-linear system solution will be assessed in Section 4.2.

The performance of the JFNK depends strongly on the number of GMRES iterations
required to solve (31). If 7 has a large condition number, the Krylov method requires a
large number of iterations to converge. In this case, it is necessary to apply a preconditioner
to the linear system:

P 175X = —P'F(X), (38)

where P is an approximation of .7, such that P~! 7 ~ Z. The main objective of the precon-
ditioner is to cluster the eigenvalues of the resulting P~! 7 matrix, allowing the GMRES
method to find a good §X,, in a small Krylov space (i.e. small number of iterations). To
construct the preconditioner, we start by linearising Equation (29):

_ (SﬂZJFl + At[V-D,V -V .U — Kev¢n+l)] 8n,;+1
Dy
+ AtV '”ZHKeV 5¢n+1 -0 (39)
N

D!’

— ot 4 S0br 2 56" =0, (39b)
e

——
L

This allows us to write the block matrix form of the Jacobian J resulting from the
spatio-temporal discretisation of Equation (29):

g (47D o2 w

where the block matrices Dy, D, and L are the spatial operators underlined in
Equation (39). Note that Z, actually differs from the identity matrix because of the scal-
ing applied to the linear system (31). Schur factorisation of the inverse of the 2 x 2 block
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Jacobian is written as:

Pl gl = <I ~(ArDy —I)“AtD,) ((Amf D 0 )
0 7T 0 8—1

T 0
x (—Ie(mpf _ ) I) S

where 8 = £ — Z,(ArDy — ) "' AtD, is the Schur complement of 7. Here, P~! is the
exact inverse of the Jacobian matrix and it only requires (AtDy —Z)~' and S ~! both
of which are easier to invert than 7. However, computing & ~1is still difficult since the
construction of S requires the solution of (ArDy — Z)~!. To obtain an efficient approx-
imation P!, we use an approximatiog S=r + Z,AtD, of S that is easier to solve. It
can be seen that for small time steps, S is a good approximation of S. Both (ArDy — I)
and S are then diagonally dominant and can be solved effectively using a multi-grid (MG)
approach. The present implementation uses a standard V-cycle approach with red-black
Gauss-Siedel relaxation to solve both linear systems to a tolerance y,,i. The effect of yy6
on the performance of the JENK is evaluated in Section 4.2. Applying P! to any vector
v requires the application of the successive matrices of Equation (41) to v. In its classical
Schur factorisation form (41), this entails four MG solves (three solves of (AtDy — T )1

and one of &' ). To save one MG solve, the block factorisation of P~! (41) is rewritten in
the following form:

Pl I —(ADy—I)'ArD,\ (2 O T 0\[AD-IT)"" 0
—\o I o ')\, T 0 I

(42)
The solution of the implicit non-linear system is summarised in Algorithm 2. Superscript
[ corresponds to the Newton iteration index while subscript p is the GMRES iteration index.

Algorithm 2: JFNK resolution

1 Get typical values of X® and F(X ) to fill Sy and S
2 do while : [|S;'F(X?D) || > €
- Build MG operators for P~! with current X
-6Xp=0
-ro =P FX?)
- Initialize Krylov subspace base vector Ky = r¢/||ro]|
do while : |7P8X, + FX)|l2 > y [FX )2
- Compute K, = P~' VK,
- FD approximation of the matrix-vector product VK p—1
(Equation (35))
- Apply Equation (42), using MG to solve the (ArDy — Z)~" and
5’_1 blocks
- Gram-Schmidt method to orthogonalize K,
- Find X, that minimises residual r, in the Krylov subspace
Kp(P~' T D, r)
- Evaluate  such that [|F(X? + 18X ,)|| < [F(X?) —aAVFX D)X,
- Update XD = X 4 18X,
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4. Numerical experiments

We first evaluate the robustness and performance of the proposed algorithm in order to opti-
mise the numerical parameters and tolerances employed in the JENK. Then, simulations
of steady one-dimensional premixed methane/air flames subject to DC electric fields are
performed in order to estimate the accuracy of the complete algorithm and provide com-
parisons with experimental data. Finally, the behaviour of flames subjected to AC electric
fields at various frequencies is analysed.

4.1. Numerical set-up

Throughout this section, we consider an unstrained one-dimensional burner-stabilised pre-
mixed methane/air flame. The operating conditions correspond to the experimental study
of Speelman et al. [20]: the inlet velocity is set to the flame speed of a stoichiometric
methane/air flame at 7 = 300 K while the inlet temperature is set to 7 = 350 K, such that
the flame is stabilised on the left boundary of the domain. Simulations are initialised from
a resolved CANTERA [51] solution ( ~ 4000 unequally-spaced grid points), that does not
include the effect of the electric field. The CANTERA solution is interpolated onto a set of
uniform grids with varying resolution, and simulations are evolved initially without exter-
nal electric forcing for 5 ms in order to eliminate any spurious artefacts introduced by the
initialisation. Subsequently, the external electric field is activated and set to the desired
values. The main characteristics of the simulations are listed in Table 2. Unless otherwise
specified, the numerical parameters (kyax, ¥, - - - ) listed in Table 2 are employed.

The interactions of the electric field with the charged particles in the flame introduces
additional time scales compared to classical reactive flow simulations. The following is an
overview of the relevant characteristic time scales and summarises the specific treatment
used here in the numerical strategy:

e bulk advective time scale:

P 3)
Uaav
e species/electron diffusive time scale:
5
= D max e,y Do) “4)
where d is the number of dimensions.
Table 2. Characteristic of the 1D laminar premixed flame.
Operating conditions
Tin [K] Uadv,in [m/s] Pressure [Pa] Y fuet,in Yo2,in Yn2,in
350.0 0.371 101325.0 0.055 0.220 0.725
Numerical parameters
L [m] Ny Ay [um] kmax Y YMG

0.01 [128,2048] [156,9.77] 4 1.0e~4 1.0e~*
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e chemical reaction time scale:

o
Tchem = ——— < » (45)
InaX{meNp} (a)m)
where w,, is chemical production rate per volume of species m.
e charged species/electron effective convective time scale:
= (46)
T == 5
o max{meNC}(Uadv + KmE)
= @7)
T, =—
conv,e Uadv + KeE

where the drift velocity of the species is considered. Note that for large values of the
external electric field, the drift velocity can oppose the convective velocity and its mag-
nitude can exceed it. Additionally, the large mobility of the electrons results in a more
stringent time-step constraint, compared to ions.

e clectron dielectric relaxation time scale characterises the response of the electric field to
a change in the electron distribution:

€0E,

Tdiel = (48)

ek N,
The first three time scales are common in reactive flow simulations. In most combustion
simulations using detailed chemical kinetics, the chemical timestep constraint is allevi-
ated in the numerical implementation by using a stiff ODE integrator. Additionally, we
use a semi-implicit Crank—Nicholson method for conduction and species diffusion which
enables time steps larger than the fast diffusive time scales of light species. The advection
of charged species is treated time explicitly so that the advective time scale constrains the
overall simulation timestep. Although this often results in time steps smaller than p,,
the charged species time scales are still several orders of magnitude larger than that of
the electrons. Typical values of the various time scales are plotted against the external
electric forcing AV in Figure 2. The data is based on a n, = 512 grid points simulation,
corresponding to A, = 19.5 wm. The bulk advective time scale is only shown as a refer-
ence for the classical low Mach number time constraint. Both 7.y, and Teen» decrease
with increasing values of AV; 7., is approximately four orders of magnitude smaller
than 13,. Both advective time scales exhibit a plateau at around AV = 250 V.cm™!, cor-
responding to the saturation voltage. At the same location, the dielectric time scale jumps
to exceed tp,. This is behaviour is related to the drop in peak electron number density as
the external voltage exceeds the saturation value. Across the range of AV considered, the
time scales associated with electrons are several orders of magnitude more stringent than
the others, thus highlighting the need for an implicit treatment of the electrons.

4.2. Iterative solvers performance

Solution of the implicit non-linear electron/electrostatic potential system with JFNK
involves several tolerances, which can have a significant impact on both the robustness
and performance of the proposed methodology. A series of tests are performed in order to
evaluate the optimal settings.
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Figure 2. Evolution of the typical value of the simulation time scales against the external voltage
AV for any = 512 mesh.

At the lower level of the JFNK algorithm is the application of the inverse of the pre-
conditioner P on the GMRES basis vectors (see Equation (42)). This requires three MG
solutions (two solutions of (AtDy — Z)~! and one solution of S 71) using a standard V-
cycle approach [52]. Two relaxation operations are applied going down and up each level
of the V-cycle based on a Red-Black Gauss-Siedel. Figure 3(a) shows the total number of
GMRES iterations per SDC iteration, as function of the V-cycle tolerance y,,. Figure 3(b)
shows the total number of V-cycle as function of y,s. To separate the effect of each block
on the performance of the preconditioner, the MG tolerance is tested for one block while
the other is solved exactly (using a tri-diagonal solver in the present one-dimensional case).
The number of GMRES iterations is only marginally affected by the multi-grid tolerance

onS _], while loose tolerance on (AtDy — 7)™ results in a large increase of the num-
ber of iterations. However, the number of V-cycles directly increases the CPU cost of the
algorithm and, in the present cases, the trade-off between the MG tolerance and the total
number of V-cycles shows V-cycles minimised around yy¢ ~ 1.0e™* as can be observed
in Figure 3(b).

Given these settings, the efficiency of the preconditioner can be directly evaluated
by comparing the convergence of the GMRES solver with and without preconditioning.
Figure 4(a) shows the GMRES residual as function of the GMRES iteration count for dif-
ferent values of AV both with and without the preconditioner. The preconditioned systems
converge 20 to 50 times faster, regardless of the external forcing. Note that simulations
are performed at a constant CFL,,, », S0 that the time step is reduced as AV increases,

resulting in a more efficient preconditioning (S - tends towards S~ as A, decreases). In
order to evaluate the effect of the time-step size on the GMRES convergence, the number
of GMRES iterations necessary to reach a 107> GMRES residual is plotted as function of
CFL number in Figure 4(b). Two CFL numbers are employed on the abscissa depending
on the external forcing: for AV values below 250V, the dielectric relaxation time scale
is the fastest time scale of the system so that CFL,; is used, whereas for forcing values
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Figure 3. (a) Total number of GMRES iterations per SDC iterations as function of the MG
tolerance ypsc. (b) Total number of V-cycle per SDC iterations as function of yyg.
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the n, = 512 case. (b) Evolution of the number of GMRES iterations required to reach y = 1.0 e
as function of the most stringent time scale CFL number.

beyond 250V, the electron convective time scale becomes smaller and CFL,,, . is used
(see Figure 2). As the CFL value drops below one, all the simulations require only a hand-
ful of GMRES iterations to reach convergence. As the CFL value increases, the number of
GMRES iterations reaches 25 for CFL around 100 for the low external forcing case and
only 10 iterations are required for the high forcing cases.

Although the preconditioner is seen to strongly reduce the number of GMRES iter-
ations, it is interesting to see its effect on the wall clock time needed for the GMRES
solver. Table 3 provides the ratio of the average wall clock time of the non-preconditioned
GMRES over its preconditioned counterpart, for different simulation sizes. Data were col-
lected during 10 iterations, where the target GMRES residual was set to y = 107>. The
first observation is that for external forcing above 100 V, although the GMRES solver
manages to converge, the quality of the resulting Newton direction is poor, preventing the
non-linear solver from converging even after 50 iterations. Table 3 shows that the precon-
ditioner has a marginal effect on the overall GMRES cost for small systems as the cost
savings obtained by the reduction in GMRES iterations count is balanced by the cost of
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Table 3. GMRES solve wall clock time ratio between non-preconditioned and preconditioned
system.

ny = 256 ny =512 ny = 1024 ny = 2048
AV =10V 1.0 1.6 3.6 42
AV =100V 1.1 24 6.3 12.6

Table 4. Average number of Newton iterations per SDC step and GMRES iterations per Newton
iteration for all the AC forced cases.

Forcing 1.0kHz 25kHz 5.0kHz 10kHz 25kHz 50kHz 100kHz

100V # Newton 2.02 2.08 2.34 3.1 43 5.08 5.12
# GMRES 28.1 27.7 27.2 26.1 254 242 24.1

1000V # Newton 2.10 2.17 2.33 2.5 2.9 3.15 3.23
# GMRES 19.7 18.3 16.5 154 14.9 13.1 12.9

2500V # Newton 2.06 2.17 2.58 2.88 3.05 3.42 3.45
# GMRES 13.7 13.5 11.1 10.5 10.1 9.9 10.1

constructing and solving the preconditioner. However, the preconditioner becomes more
effective as the system size increases. Indeed, the convergence of the preconditioned sys-
tem is only marginally affected by the size of the system whereas the unpreconditioned
system convergence rate decreases with 7.

Most of the results presented so far were obtained in quasi-steady-state conditions,
where the solution is evolving slowly (typical time scales correspond to the bulk convective
time scale). To evaluate the robustness of the approach in the case of time varying solu-
tions, statistics for the JFNK solver are collected during several periods of the AC-forced
cases presented in Section 4.5. Table 4 shows the average number of Newton iterations
per SDC iteration and the average number of GMRES iterations per Newton iteration for
all cases (changing the forcing amplitude and frequency). Simulations are performed at a
constant CFL,,,,, = 0.5, such that the time step changes in time and from one case to
another. Overall, these results indicates that the numerical strategy is well-behaved over
a wide range of operating conditions. For a given external forcing value, increases in the
forcing frequency result in an increase of the number of the Newton iterations whereas
the number of GMRES iterations decreases. This trend is observed for all three external
forcing values. As the forcing frequency increases, the solution exhibits transient local
electric fields larger than those observed in the quasi-steady state, which in turn induces a
reduction of the average time step and a decrease in the average GMRES iteration count.
The increase in Newton iteration counts with forcing frequency reflects that the solver is
initially outside the quadratic convergence region and the linesearch algorithm damps the
Newton updates.

4.3. Method convergence

In order to evaluate the convergence properties of the complete algorithm, simulations are
performed halving the inlet velocity and evolving the system to a fixed time with increas-
ing resolution, decreasing Ax by a factor two with each refinement. The simulations are
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Figure 5. L?-norm of the error in the 1D premixed flame with four grid resolution and increasing
the external electrical forcing.

performed at a constant CFL,, .,,,. The error is obtained by comparing the results at reso-
lution Ax with those computed with twice the resolution Ax/2. The L? norm of the error
for a simulation with n, cells is:

L, = ni Z (oo )2, (49)

where (pic_f is the average of the fine results onto the coarser grid. Figure 5 shows the L?
norm of the error at four grid resolutions for 6 scalars: p, ph, Ycp,, Yn,, n. and Yg,0+. The
slope of the error shows that second order is reached for all variables across the range of
external forcing considered. The error on neutral species and mixture averaged quantities
is not affected by the external forcing whereas the error on n, and Yy, o+ decreases for high
AV values (but remains a second-order convergence rate). This decrease in errors indicates
that the applied voltage is higher than the saturation voltage at which the charged species
are drawn away from the reaction zone by the electric drift as fast as they are produced by
chemical reactions.
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Figure 6. (a) Profiles of temperature, np and ncy across the flame. (b) Profiles of temperature and
Ne, Ng,0+ Ny0+ and ne, g, o+ across the flame. AV = 0.

4.4. Steady premixed flame under DC

Burner-stabilised, steady-state premixed methane/air flames subjected to DC electric fields
have been studied using the PREMIX programme in previous studies [20,39]. Figure 6
shows the temperature as well as oxygen, CH, electrons, H;O" and C,H;0™ profiles across
the flame in the absence of an external electric field. Oxygen and CH are the key neutral
species controlling the production rate of electrons, i.e. the number of charged particles
in the flame and consequently the maximum current that can be drawn from the flame
[20,22]. Accordingly, the peak electron density in Figure 6 is located near the correspond-
ing maximum of CH. Note that the number density of charged species is about five orders
of magnitude smaller than that of an intermediate radical such as O. In the absence of
an external electric field, the sum of number densities of the two major cations (H;O™"
and C,H3;0™") equals that of electrons, as ambipolar diffusion tends to balance charge
separation resulting in a near electro-neutral gas.

The peak value of electron and H3;O" is higher than that reported in a previous study
[39] where the neutral chemical mechanism was optimised to better reproduce the CH
distribution. This study showed that the GRI3.0 mechanism over-predicts the CH mass
fraction, resulting in higher chemi-ionisation rate and electron maximum number density.

Figure 7 shows comparisons between experimental i-V curves [20] and the present sim-
ulations. The current i is evaluated by computing the charge flux carried by the charged
species m:

Jm = Z_ml-‘m + Z_mIOYmUef,m (50)
qe e
and summing over positive and negative species:
JT=Y"Jm (51)
meN,
J =Y Jutde (52)
men,
J=J"+J". (53)

Finally, i = JSexpe, Where Sey,. = 7.04 cm~? is the experimental cross section of the

burner [20]. Note that from the species conservation equations, in steady-state conditions
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Figure 8. (a) Electrostatic potential and (b) Electric field for positive values of AV.

Jm = (Zm/qe)®m, showing that the current drawn from the flame is directly related to the
production rate of charged particles. The simulation results are consistent with the exper-
imental data: the current increases for positive voltage until it reaches a plateau as the
applied voltage exceeds a saturation value. In contrast, higher negative voltage is required
to reach saturation conditions. This effect of the polarity, known as diodic effect, results
from the large difference in distance between the flame and each electrode [20]. The over-
prediction of the saturation current is consistent with the fact that the mass fraction of CH
is over-predicted by the GRI3.0 mechanism.

The profiles of charge particles at different values of the external voltage AV is
presented in more detail in Figures 8—10, which also show the steady-state profiles of elec-
trostatic potential and electric field, for both positive and negative AV. For sub-saturation
voltages, the electric field profiles show the existence of a ‘dead zone’, where the electric
field is close to zero and the particles are not affected by electric forces. As the external
voltage intensity increases, the electrode sheath develops, eventually penetrating into the
reaction zone of the flame. As saturation conditions are reached, the peak number densities
of charged particles drop since they are convected away from the reaction zone as fast as
they are produced through chemi-ionisation. This drop is responsible for the jump of Az,
in Figure 2 and the drop in L?>-norm of the error on charged particles in Figure 5.
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Figure 9. (a) Electrostatic potential and (b) Electric field for negative values of AV.
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The charged particles profiles in Figure 10 show that the proposed algorithm is able to
accommodate very sharp profiles in the charged species distribution, without introducing
numerical noise that would eventually lead to unstable numerical oscillations due to the
strong non-linear coupling between the electrons and the electrostatic potential.

4.5. Unsteady premixed flame

In order to demonstrate the potential of the method to tackle unsteady simulations, the
behaviour of the burner-stabilised flame subjected to AC conditions is studied. Three forc-
ing amplitudes As¢ are considered: 100V, 1000 V and 2500 V, respectively corresponding
to conditions below both positive and negative saturation voltages, above positive and
below negative saturation voltages and above both positive and negative saturation voltage.
In order to estimate a characteristic relaxation time of the electrical structure of the flame,
the time required for the electron and H3O" to travel across the computational domain
is evaluated using an averaged effective velocity U of based on a representative mobility
value for each particle and the external forcing intensity AV. Table 5 summarises these
relaxation times for the three forcing amplitudes considered, showing that electrons relax
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Table 5. Estimated relaxation time of electrons and H3O™ for increasing external forcing intensity
AV.

Relaxation time [s]

AV =100V AV = 1000V AV =2500V
T~ ‘EH30+ Te— TH30+ Te— TH30+
25¢70 25¢74 25¢77 25e7° 1.0e~7 1.0e73

Table 6. Considered forcing frequencies and half periods for the AC cases along with ratios to the
characteristic relaxation time of electrons and H30 at Ay = 1000 V.

Case fac [Hz] Tac/2 [s] TAC/2Te~ Tac/ 2t 0+
ACl1k 1000 574 2000 20
AC2.5k 2500 2074 800 8
AC5k 5000 le™* 400 4
AC10k 10000 5¢7° 200 2
AC25k 25000 2e7 80 0.8
AC50k 50000 le™d 40 0.4
AC100k 100000 50 20 0.2

within a few micro-seconds, whereas it takes about a 100 times longer for the H;O™ to
relax.

These relaxation time scales can be compared to the half period of an AC forcing t4¢/2
to distinguish several regimes (for a fixed value of AV): (1) for low forcing frequency,
fac, both electrons and ions remain in quasi-equilibrium with the instantaneous potential
difference and the charged particles profiles are close to the corresponding steady-states;
(2) for higher f4c, the electrons are close to equilibrium, but the slower ions do not reach
steady-state, changing the current drawn from the flame and possibly inducing an asym-
metric ionic wind due to the diodic effect; and (3) for very high fs¢ the ions are too slow to
respond to the change in external electric potential and the ionic wind (mainly due to the
motion of ions) becomes negligible. In practice, only the first two regimes are of interest
to study the effect of ionic wind on the flame behaviour. Additionally, in the first regime,
the flame structures are expected to remain close to the ones described in Section 4.4 so
that we will focus on the second regime by considering fy¢ listed in Table 6.

The temporal evolution of the H;O" profile during a statistically steady period of the AC
forcing is shown in Figure 11 for the seven values of fyc considered at a constant forcing
amplitude of 1000 V. Each plot shows the evolution of the one-dimensional H;O" number
density profile (horizontal direction) as function of the normalised time #* = t/t4¢ (vertical
direction, from top to bottom). A few periods are necessary before reaching statistically
steady oscillations. Note that, these plots confirm that the proposed algorithm is able to
smoothly capture the fast motion of steep charged species fronts.

Figure 11 shows that for the initially positive polarity, the development of the cathode
sheath is qualitatively similar to the steady states depicted in Figure 10(a). For low forcing
frequency, positive saturation conditions are reached for most of the cycle first half-period.
As the forcing frequency increases, the cathode sheath is no longer able to fully develop
and H;O™" depletion near the right boundary of the computational domain remains during
part the second half of the cycle, even though the polarity is reversed. Additionally, the
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Figure 11. Space (horizontal) and time (vertical) evolution of the H3O™ number density at six AC
forcing frequency and Aqc = 1000 V. Time is normalised by the forcing period 4¢.

peak value of H;O™ is found to decrease with increasing frequency, indicating that the
charged particle profiles are no longer able to relax to the forcing free profiles while the
instantaneous voltage is close to zero.

To analyse the effect of the forcing frequency and amplitude on the ionic wind effect,
the integral of the Lorentz forces appearing the momentum equation (5) across the
computational domain is computed:

Froven: = / p Y amYnE dx (54)

m-+te
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Figure 12. (a)-(c): temporal evolution of the integrated Lorentz forces Forensz- Time is normalised
by the AC period. (d): evolution of the Lorentz forces average work as function of fyc.

corresponding to the force per unit area. Additionally, to evaluate the effect of this force
on the flame, the average work of the Lorentz forces Wy, over a period is evaluated
from the Ohmic heating term appearing in the energy equation (4). Figures 12(a—c) show
the temporal evolution of Fy ., during one AC forcing period for the three values of
the forcing amplitude while Figure 12(d) shows the evolution of Wy, as function of the
frequency for different values of A4¢. For small forcing amplitude (below both positive and
negative saturation values) the proximity of the flame to the anode, also responsible for the
diodic effect, results in an overall negative Lorentz force, the work of which increases with
increasing frequency. As the forcing amplitude increases, the positive Lorentz force during
the second half of forcing cycle becomes more important. In these conditions, increasing
the forcing frequency results in an increase of the averaged work generated by the Lorentz
force, up to a critical frequency above which the electric field is no longer able to penetrate
into the flame and the work begin to decrease. These results indicate that, as in the DC
cases, the effect of the AC electric field not only depends upon the forcing frequency and
amplitude, but also the flame position compared to the electrodes.

5. Conclusion

This work proposes a new numerical strategy to include the motion of charged particles
in simulations of low Mach number reactive flows in the presence of electric fields. We
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have found that to overcome the stringent timestep constraint imposed by fast electrons
and their coupling with the electrostatic potential equation, a non-linear implicit solution
of the system of equations governing these two quantities is necessary. Keeping in mind
the need for an efficient methodology in large scale (multi-dimensional) computations,
we have developed an algorithm that introduces a JFNK solver within the SDC iterations
developed for classical reactive flow simulation. To obtain good performance, we con-
structed a preconditioner based on the Schur decomposition of the Jacobian matrix for the
electrons/electrostatic potential system. An approximation of the Schur complement of the
Jacobian matrix is proposed enabling use of multi-grid method to approximate the inverse
of the preconditioner in the iterative linear solve.

We demonstrated on one-dimensional burner-stabilised premixed flame configurations,
that second-order accuracy is reached for all the transported variables and for a wide range
of external electric forcing. The numerical results compare well with experimental data
regarding the current—voltage characterisation of the flame (given the uncertainty on the
chemical mechanism) and detailed analysis of the charged particles profiles are consistent
with previous studies using steady-state one-dimensional solvers.

The proposed strategy is currently being implemented in the low Mach number reac-
tive flow solver PeleLM, which is based on the block-structured adaptive mesh refinement
library AMReX. The resulting unique numerical tool will allow us to investigate realis-
tic engineering applications of electric field controlled flames that have so far not been
possible.
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